A Framework for Gradual Memory Management
A safe, performant technique for integrating custom allocators and

garbage collection mechanisms

Jonathan Goodwin
jondgoodwin@gmail.com

September 12, 2017

Abstract

This paper details a technique that gives the programmer more
control over memory use, including support for both static and run-
time garbage collection, as well as multiple custom allocators, within
a single program. This technique marries Rust’s lexical owner model,
Pony’s reference capabilities, and the proposed allocator types. Use of
these flexible mechanisms supports optimization of performance, mem-
ory safety, and memory use without the usual trade-offs. The proposed
mechanism is gradual, allowing the programmer to progressively opt-in
to its many capabilities, thereby easing the learning curve.

1 Introduction

Programming languages are opinionated about memory management, offer-
ing built-in support for a limited subset of proven allocation and garbage col-
lection (GC) strategies. Given that memory management techniques vary in
their delivered benefits and costs, supporting only a few strategies constrains
a language’s ability to serve a wider range of application requirements. At
the risk of oversimplifying issues more carefully explored in section 3, the

selected memory management strategy can impose these comparative trade-
offs:

e Manual memory management sacrifices safety enforcement for perfor-
mance and flexibility

e Runtime GC-based languages sacrifice performance and responsiveness
for programmer convenience, flexibility and safety

e Static lexical memory management (as implemented by Rust’s sin-
gle owner regional inference model) sacrifices data structure flexibility,
programmer convenience and sometimes memory utilization for safety
and “zero-cost” collection.

For many programs, such trade-offs are not problematic. Performance and
safety is “good enough”, memory is abundant and cheap, and programmers
are comfortable with their suite of tools. However, business, technology and
user constraints can make certain classes of programs less tolerant of such
trade-offs. For example:

e Internet-delivered services. Corporations are eager to adopt con-
venient techniques that deliver better performance, particularly when
it translates to lower infrastructure costs. They would also welcome
compile-time safety guarantees that help lower their risk to malicious
hackers able to exploit unsafe memory practices.

e Mobile and Internet of Things apps. Such apps need to safely
deliver increasingly rich and responsive capability using small devices
that severely constrain available memory, CPU cycles and power.

e Interactive 3D games. 3D engines need to distribute and render
massive, realistic, mutable 3D content reliably every 17 milliseconds.
Satisfying this punishing requirement strains even high-end equipment.
High-performance and responsive memory management is a difference-
maker. Safety is increasingly becoming one as well, as content delivery
and interactivity increasingly becomes Internet-centric.

Section 2 of this paper proposes a promising type system that gives such
programs more control over choosing the integrated mix of custom alloca-
tion and garbage collection strategies that better satisfy its demanding re-
quirements for compile-time safety guarantees, performance, responsiveness,
memory utilization, flexibility and programmer convenience.

This paper’s proposed type system builds on proven mechanisms baked
into Rust and Pony, two recent, ground-breaking languages. Both offer com-
prehensive, compile-time safety guarantees that result from differing memory
management strategies and type systems:

e Rust lexical memory management rests on its single-owner alias
model, which uses compile-time knowledge about alias lifetimes, bor-
rowed references and mutability exclusion to generate code that is
memory-safe| Rust-own|.

e Pony’s reference-counted memory management is protected by its flex-
ible reference capability model that ensures during compilation that
concurrent data access is always safe[Pony-cap.

The proposed technique marries together their best-in-class alias lifetime
(sections 2.2) and reference capability (section 2.4) type systems with these
innovations:

e It introduces the allocator type (section 2.3), which enables programs
to use multiple “plug and play” memory management mechanisms.

e It distinguishes allocator type from value type (section 2.3.2), allowing
static enforcement of permissions even on "wrapped" values.

e It relaxes Rust’s owner alias concept (section 2.3.3) to allow multiple,
non-lexical owner aliases to refer to the same object.

e It adds the "lock" permission (section 2.4), another mechanism for
static enforcement of shared, concurrent mutability.

e It promotes a “gradual" way (section 3) to take advantage of its inter-
locking mechanisms, so that a program can begin its life using a simple
subset and then gradually make use of more advanced features as it
adapts to more demanding requirements.

Section 2 does more than describe four alias types. It also describes alias-
ing mechanisms the compiler uses, such as lexical isolation, static enforce-
ment, coercions, move semantics, and generated allocator behaviors, to de-
liver greater programmer flexibility and compile-time safety guarantees. At
times, it includes code excerpts to help illustrate these mechanisms.

After explaining what “gradual memory management” means, section 3
assesses the benefits and costs of the proposed memory management type
systems in terms of safety (section 3.1), performance and responsiveness
(section 3.2), memory utilization (3.3) and programmer convenience (3.4).

Before we dive in, let me warn any reader expecting too much: This is
not an academic paper that summarizes concrete research. It proposes
no language specifications or detailed algorithms. It is too early for that.
Since the technique has yet to be implemented nor formalized into a model,
no measurements or proofs are offered that support the claims it makes.
Since the described techniques are relatively new, supporting citations or
relevant prior research work are hard to find and few in number.

That said, this paper is more than an outline or thought experiment. It
is a detailed, carefully constructed, working hypothesis about a promising

Value Type

Enforce domain
& behaviors

Owner ___ | Heao
- stack

Allocator Type e Y Permission
Allocate, alias jrsgucsmr.n Encoded Prevent concurrent
& free memory / Value mutation

Borrow - |

. Lifetime ' -

Enforce lifetime \solste threads
dependencies

Ald auto-drop

Figure 1: Alias Type Properties

technique. Sufficient detail is provided to helpfully guide a future imple-
mentation. Its claims may not yet be proven, but they rest comfortably on
top of Rust’s and Pony’s working (and proven) implementations as well as
established, hard-won wisdom about memory management trade-offs.

2 Aliases and their types

The complexity of memory management stems, in part, from programs hold-
ing multiple pointer references to the same data object. In this paper, we
call every reference an alias. An alias can be a local or parameter variable, a
specific element in a collection, or a function’s return value. These references
are called aliases because when you alter the data value through one alias,
all other aliases that refer to that data value now see the new value, and not
the old one.

In statically-typed languages, every alias is typed. This type information
establishes constraints that the compiler enforces whenever the alias is used.
Typing constraints make it harder to write code that fails to do what it is
intended to do, thereby supporting a language’s safety guarantees.

This paper’s memory management technique relies on every alias having

four types (see figure 1):

e Value type, the type of the object. This ensures the object only
contains valid values. When applied to pointers, it ensures that the
referenced object is alive and valid.

e Lifetime, the valid scope of an alias. This ensures that every object
remains available so long as any alias refers to it and assists permis-
sion types with protecting against simultaneous mutation of the same
object.

e Allocator type, the memory management technique that allocates
and frees the memory needed by the object the alias refers to.

e Permission type, constraints on alias usage. This offers both lock-
based and lock-less techniques for preventing mutability collisions be-
tween multiple aliases that reference the same object.

Static languages make use of value types. Some languages offer permission
annotations. Rust introduced lifetimes. Allocator type, as a separate type
for an alias, is new and lives at the heart of this paper. The purpose and rules
are defined progressively for each, laying the foundation for the allocator type
whose mechanisms depend on value type and lifetime information.

2.1 Value type

The value type restricts the domain of content values that an alias can refer
to and the operations that can be performed on it. For example, the variable
counter might only hold 32-bit integers (i32) and the variable coord may only
hold a Point3D structure containing three floating point numbers for x, y,
and z. Armed with this information, the compiler can stop us from trying
to fit a square peg in a round hole. Thus, it would prevent us from trying to
copy the data contents held by coord into counter.

Value types are well-trod ground, and do not need much exposition here.
However, four aspects of value types are worth mentioning in the context
of memory management: dynamic typing, size determinism, pointer safety,
and ‘copy’ values.

Dynamic typing. Although this paper describes value types as being stat-
ically typed, the proposed memory management techniques applies just as
well for dynamically typed aliases. It might seem odd for a language to
specify lifetimes, allocators and permissions statically, while allowing value

types to be dynamically typed. However, just such a situation would arise
in a language that supports both gradual typing[Siek] and gradual memory
management.

Size determinism. The memory size for all value types must be known
to the compiler. This information is necessary when allocating memory for
a new object of that type. This applies to dynamic value types as well,
which are typically all encoded within a consistent, fixed-size, self-typed
data structure.

Pointer Safety. If compile-time enforcement of memory safety is desired,
the language needs to carefully isolate all pointer arithmetic to ensure that
every alias always refers to a valid, live object of the intended value type. One
way to accomplish this is to permit pointer arithmetic only within ‘unsafe’
blocks or allocator code. Language support for slices can also help.

‘Copy’ values. For performance reasons, many languages support what
Rust calls ‘copy’ types: word-sized, primitive value types, such as integers
and floating point numbers. Other languages call these primitive types or
data types, and distinguish them from reference types. Space for ‘copy’ type
values are wholly allocated on the stack or within structures. Reference
type values have two parts: a pointer that references separately allocated
contents.

A variable holding a reference type is an alias. A variable holding a ‘copy’
type is not an alias. Given that this paper’s primary focus is on aliases, let’s
quickly address here a few aspects of ‘copy’ type handling.

Assignment has a different meaning for ‘copy’ value types (e.g., i32) than
non-"copy’ value types (e.g., Point), as demonstrated by this Rust excerpt:

let mut a = 2; // 2 is a copy value

let mut b = a; // b gets a separate clone of a’s value
b = 3; // changing b does not change a’s value
println!("{}", a); // a is still 2

// Point is not a copy value. Aliases change same object.
let mut p = Point {x: 3.3, y: 2.2};
{
let q = &mut p; // q points to the same object as p
q.x = 2.2; // changing q also changes p

println!("{}", p.x); // p.x is now 2.2

That said, it is possible to create multiple aliases that point to the same
‘copy’ value:

let mut a = 2;

let b = &mut a; // b points to a’s value
*xb = 3; // changing b also changes a

println!("{}", a); // a is now 3

This paper focuses on how to safely manage this sort of aliasing behavior
where multiple aliases might point to the same allocated content.

2.2 Lifetimes

Most languages structure code using lexically-scoped blocks that establish
a single “exit” point for all logic contained within the block. With this
constraint in place (or by using control flow analysis as Rust intends to do
for sub-lexical lifetimes[Rust-nll]), the compiler can easily infer the lifetime
of most variable aliases, as they are bounded by the lexical scope they are
declared within. The lifetime of such an alias begins with its declaration and
expires at the exit from that block. Thus, the lifetime of an alias, unlike
other alias properties, rarely requires explicit declaration.
Knowing the lifetime of an alias facilitates some valuable benefits:

e [t helps determine when to free an object that is no longer needed.
e [t protects against referencing an object that no longer exists.

e It provides a useful code isolation barrier for aliases owning exclusive
rights to an object.

2.2.1 Lifetime-driven Frees and Moves

The lifetime of an alias and the lifetime of the object the alias points to are
often not the same. The lifetime of an object spans from the time it was
created (and memory was allocated for it) until, ideally, when we know a
program will no longer access its contents. Since last access can sometimes
be hard to determine, a more conservative strategy is typically employed,
which establishes that the lifetime of an object expires when we no longer
have any alias that refers to it. This means that an object’s lifetime will
never be shorter than the lifetime of any alias pointing to it, but will in fact
span across the lifetimes of all aliases that refer to it.

The purpose of automatic garbage collection is to determine when to free
an allocated object’s memory after its lifetime has expired, when its contents
are no longer accessible by any program alias. Freeing it too soon is unsafe.
Freeing it too late or not at all can cause a program to require more memory
than it actually needs.

Different garbage collection schemes vary in the heuristics they use to
determine that an object’s lifetime has expired. For example:

e Reference Counting. During run-time, count how many aliases refer
to the object. The lifetime expires when the count reaches zero.

e Tracing. During run-time, mark all references reachable from the
roots (execution stack and globals) as alive. Free any allocated object
that is not marked alive.

e Lexical (e.g., Rust). During compilation, generate code that auto-
matically frees an object at the end of the lexical block containing an
owner alias that does not transfer ownership to another alias.

e Manual. The programmer uses their understanding of the program’s
logic to (hopefully correctly) determine the right time to explicitly free
allocated objects.

A language can use the relationship between the lifetime of an object and
the known lifetimes of its aliases to determine when to free an object that is
no longer needed. For example:

o If we know for sure that only one alias refers to some object, as is true
for lexical aliases, the compiler can safely conclude that the lifetime of
the object and alias are the same. The compiler can then automat-
ically and safely free each such object at the end of the block where
the lifetime of its exclusive alias expires. Rust’s “single owner” lexical
memory management makes effective use of this mechanism for “zero
cost” garbage collection.

e If we are keeping an accurate count of how many aliases currently
refer to an object (as reference counting garbage collectors do), the
compiler can accurately decrement the counter for an object whenever
the lifetime of each “counted” alias expires at the end of its block, Once
the decremented count reaches zero, the object’s lifetime has expired;
we can safely free it.

But what if we do not want a lexically-allocated object to be freed when
the lifetime of its exclusive alias expires? Instead, it would be useful to be
able to transfer exclusive ownership of an object from one alias to an alias
in a different lexical scope, only freeing it at the end of its journey. This
technique allows an object to “surf” across multiple lifetime scopes, as this
Rust code illustrates.

struct Point { x: 132, y: i32}

fn create() —> Point

{ Point { x: 5, y: 10} } // allocate
fn transform(p: Point) —> Point

{ Point { x: p.x+ 1, y: p.y + 1} } // free p & alloc
fn drop(p: Point)

{ println!("Drop {}.{}", p.x, p.y); } // free p
fn main() {

let p0 = create(); // Ownership moves from create to main
let pl = p0; // Ownership moves to pl.

// p0 is no longer usable

let p2 = transform(pl); // Two moves: pl in, p2 out

// pl is mno longer usable

drop(p2); // p2 moves from main to drop

// P2 is no longer usable

}

That is the purpose of Rust’s move semantic (and Pony’s consume): A
new alias receives exclusive ownership of an object held by a previous alias.
Once that transfer has occurred, the old alias is deactivated and can no
longer be used to access that object. In a sense, we can say its lifetime has
been abbreviated, expiring before the end of the block it is declared within.

To summarize: the lifetime end of any still usable (not moved) alias is a
meaningful event to the compiler, triggering de-aliasing behavior that varies
depending on the memory manager used to allocate the object. It might free
the object, do some runtime bookkeeping, or do nothing. We will return to
this topic in section 2.3.1.

2.2.2 Lifetime Dependency Safety

Another way that alias lifetimes are valuable relates to lifetime dependencies.
In particular, we want to make it impossible to ask an alias to refer to an
object whose lifetime we know will not last as long as the lifetime of the alias.
Since this mechanism depends on compile-time information about lifetimes,
it is useful only when applied to static (section 2.3) and borrowed (section
2.3.3) aliases. Lifetime dependency is not enforced with owner aliases that
refer to objects managed by run-time or manual garbage collection.

The compiler’s ability to prevent unsafe lifetime dependencies rests on
the fact that the lifetimes of two active aliases are quite easily compared, as
alias lifetimes are bound to lexical block scopes and lexical block scopes are
always nested within each other. Thus, the lifetime of an alias declared in
an inner block is knowably shorter than an alias declared in an enclosing,
outer block.

Using this information, a compiler can ensure safe aliasing between two
interacting aliases that have different lifetimes. For example, a compiler can
generate an error whenever an alias is assigned a reference to an object that
does not live as long as the alias, as Rust would here:

let mut a = 4;
let b = &a;
{

let mut x = 8;
b = &x; // Error: x lifetime is shorter than b

}

// If allowed, b would refer to a freed value

A similar enforcement mechanism can also be applied when assigning one
alias a reference to an object that another alias points to. The compiler can
generate an error whenever a longer lasting (outer block) alias is assigned
a reference to an object pointed at by a shorter-lasting (inner block) alias.
This restriction is not always ideal, as we are using the lifetime of one alias
as a proxy for the lifetime of its object. It won’t make the program unsafe
to prevent such assignments, but it may make the compiler overzealously
protective (and inflexible) should it turn out that the referenced object will
assuredly outlive its new alias.

This challenge is particularly acute when aliasing object references across
functional boundaries, where the compiler essentially loses visibility to life-
time dependencies across both directions of a function call with regard to
sent parameters and returned values. In this situation, the compiler requires
guidance from the program about lifetime dependencies between parameters
and return values in the form of lifetime annotations|Rust-life|. The com-
piler can use the function signature’s lifetime annotations to prevent unsafe
lifetime aliasing not only within the function itself, but also on all its callers.

For example, this Rust function uses the lifetime annotation ‘a to indicate
that the return value alias has the same relative lifetime as the parameters
x and y:

fn max<’a> (x: &’a 132, y: &’a 132) — &’a 132 {
if x>y {x} else {y}
}

10

Will it cause a problem if we declare that the lifetimes of x and y are
the same, when it is likely they are different? Fortunately no. For lifetime
comparison purposes during function application, the compiler will coerce
the lifetime of ‘a to be the shorter of the two aliases lifetimes. It will use this
coerced lifetime to ensure the lifetime of the returned value will be handled
safely by any function that makes use of the max function.

Lifetime annotations can also be valuable when a function needs to know
(and enforce) that the lifetime of one parameter alias is greater than the
lifetime of another parameter alias. Rust makes use of lifetime subtyping to
assert that lifetime ‘b exceeds lifetime ‘a. For example:

fn foo<’a, ’'b:’a>(mut na: &’a Point, mut nb: &’b Point) {
na = nb;

//nb = na; // Error: violates dependency ’'b outlives ’

a

2.2.3 Code Isolation Barrier and Move Semantics

There is one final benefit we get from knowing that the lifetime of some
aliases are restricted to an inner block scope. So long as we harden that
code isolation barrier, protecting carefully what comes in and out, we can
use it to borrow an alias’s exclusive rights to an object within that inner
scope and recover those rights upon exit from that inner scope. This recover
block coercion mechanism will be discussed when describing permission en-
forcement.

2.3 Allocator Type

We have talked about aliases pointing to objects, but have not described how
those objects are allocated or freed. Many languages use a single, default
allocation/free mechanism: often a tracing or reference counting run-time
garbage collector, but sometimes lexical memory management or “wild west”
manual memory management.

The problem with restricting a language to a single memory management
technique is that you restrict its programs to that technique’s particular
strengths and weaknesses. Often, this restriction means sacrificing one or
more of performance, flexibility, ease-of-use or safety. Enabling a language
to support multiple memory management techniques reduces this sacrifice
substantially, as it allows a program to optimize for both performance and
flexibility without losing any compile-time safety.

11

That is the purpose of the allocator type, another declarable property of
an alias: its use allows a program to specify, for each alias, the allocation/free
mechanism that handles the object the alias refers to. By using different
allocators on an alias-by-alias basis, programs gain the ability to exploit
multiple memory management strategies.

Each allocator type encapsulates the static and runtime state and behav-
ior of a specific memory management mechanism. For example:

e local might allocate fixed-size objects directly on the stack

e lex might mimic Rust’s compile-time (“no cost”), single owner memory
management

e rc might support a simple ref-counting garbage collection strategy.
e tgc might support generational, incremental mark-compact-and-sweep.

e pool, offering a performant, cache-friendly technique for allocating and
freeing small, fixed-size objects.

This is not intended to be an exhaustive list of possible allocator types.
Many variants of these techniques could also be allocator types, addressing
concurrency, weak references, reference counting that uses tracing to handle
cyclic data structures, and many other flavors of custom allocators. Ideally,
a language would support the programmatic creation of allocator types, each
optimized for different use-case constraints and requirements.

2.3.1 Allocator Behavior and Lifetimes

Allocators play well together with the lifetime mechanisms described earlier.
Rather obviously, allocators wrap around the lifetime of an object: allocating
the object at the start of its life and freeing it at the end. Less obviously,
allocators also play a critical role with aliasing and de-aliasing (when an
alias’s lifetime expires).

Thus, every allocator type specifies its own distinct logic for these core
behaviors:

e Allocate. This allocates a memory block for an object of a specific
size. It may initialize metadata with that block, such as a counter (for
RC), color flags (for tracing), or the finalization code to run before
freeing the object. For tracing, it could also trigger runtime execution
of some portion of its tracing or sweep logic.

12

e Alias. This copies a pointer for an object into a new alias. With RC,
this would increment the counter. With incremental or generational
tracing, this would activate the write (or read) barrier. With lexical,
this would invoke move semantics, transferring ownership from the old
alias to the new one.

e De-alias. With lexical, it frees the singly-owned object. With RC,
it decrements the counter and frees when zero. With tracing, it does
nothing, as the required trace and sweep activity is triggered indepen-
dently from de-aliasing.

e Free. This de-allocates the memory block, making the space available
for future use. Prior to this memory de-allocation, it might also be
necessary to invoke value type-specific finalizer or destructor logic.

To illustrate how alias lifetimes (section 2.2.1) interact with these alloca-
tor behaviors, consider this simple pseudo-code. ‘r¢’ designates a reference
counting allocator type:

struct Point { x: 132, y: i32}

fn transform(p: rc Point) {

p.x=p.x + 1;
} // De—alias of p decreases ref count to 1

fn main() {
// Allocate Point structure using rc allocator
rc pl = Point { x: 5, y: 10};
// Function call aliases pl, increasing ref count
transform (pl);
} // pl de—alias decreases ref count to 0. It is freed.

If we change this code’s ‘r¢’ to ‘lex’ (lexical allocator), it would still work.
However, instead of altering the alias’s reference counter with each alias and
de-alias, the call to transform() would move pl into that function and then
free it at the end of that function.

In addition to the four core behaviors listed above, allocator types might
also specify additional behaviors, such as support for weak aliases or the
ability to alter various run-time configuration controls. Allocator types that
use a “global” state would need start-up logic to initialize the state when the
program is run and clean-up logic that is performed upon program termina-
tion.

An allocator type’s programmatic behaviors would be generated by the
compiler ag inline code, some of which may call API’s whose implementation
is loaded as part of the appropriate companion library. Additionally, the

13

compiler will need to automatically generate tracing and sweep logic for all
data structures (including the stack) that refer to objects allocated by a
tracing GC allocator, so that all owned references allocated by the tracing
allocator can be comprehensively marked and freed. The compiler might
also need to generate concurrent GC safe points for execution points when
it knows the stack map is valid for GC activity.

2.3.2 Allocator vs. “Wrapper” Value Types

Use of allocator types is one way to support multiple memory management
strategies. Rust accomplishes this in a different way. It offers built-in
“wrapper” value types[Rust-wrap|. For example, Rc<RefCell<T>> sup-
ports single-threaded reference-counted memory management for an object
of type T.
Supporting run-time garbage collection this way, applying wrappers around

the content’s value type, can result in unnecessary complexity and lost ca-
pability:

e The zealous single-ownership protections that are necessary for lexi-
cally allocated objects are too restrictive when applied to runtime al-
located objects that benefit from allowing multiple pointer references.

e Mutation guarantees cannot be statically enforced on wrapped values,
requiring the need for “interior mutability” runtime mechanisms.

e The coding logic required to borrow from and work with wrapped
values is unnecessarily verbose and hard to learn.

e The compiler lacks the ability to generate the extra tracing logic needed
for a tracing GC.

Cleanly separating allocator types from value types, as this paper proposes,
offers attractive benefits:

e The compiler and programmer can work with every kind of allocator
type as simple plug-and-play equals, adjusting gracefully to how they
handle their memory management strategy differently under the covers.

e The compiler can enforce every alias’s permissions (section 2.4) di-
rectly to the referenced object, at compile-time, regardless of where
that object came from.

14

2.3.3 Owner vs. Borrowed references

Rust distinguishes between owner aliases and borrowed reference aliases:

e In Rust, only one owner alias can refer to a specific object. This
single-owner constraint is critical to lexical’s automatic memory man-
agement. It powers the aliasing “move semantic” (section 2.2.1) which
enables an object to surf across multiple functional scopes. It also
powers the automatic object free when the lifetime of its last alias
ends.

e Multiple borrowed reference aliases may borrow an object’s refer-
ence from any owner or borrowed alias. Borrowed references behave
differently than owner aliases. Borrowed references are passed to func-
tions as simple copies that do not transfer ownership. Likewise, when
the lifetime of a borrowed reference alias expires, no object free behav-
ior is triggered.

Handling and passing around borrowed references is safe because bor-
rowed references are guaranteed by the compiler to have a shorter life-
time than the owner alias they borrowed from (section 2.2.2). When
we use a borrowed reference, we know at least one owner reference also
exists that ensures the object stays alive and safe to reference.

This paper’s proposal adopts this distinction and applies it to allocator types.
Every alias using the allocator types mentioned so far (e.g., lex, rc, tracing gc)
is an owner alias. However, unlike Rust, not all owner aliases are constrained
to be single-owner aliases. Only the static allocators (such as lex) preserve
this constraint. For run-time managed objects, multiple owner aliases may
point to the same object at the same time.

Borrowed references are handled as a special allocator type: ‘borrowed’.
The ‘borrowed’ allocator type plays no role in allocating or freeing memory
for objects. It is just a signal for the compiler to treat borrowed aliases using
a special rule set, exactly as described above for Rust.

The following pseudo-code (adapted from section 2.3.1) illustrates the use
of borrowed aliases. Like Rust, it uses ‘&’ to declare a borrowed reference:

struct Point { x: i32, y: i32}
fn transform(p: &Point) {
p.x =p.x + 1;

}

fn main() {

15

rc pl = Point { x: 5, y: 10}; // owner alias
transform(pl); // alias to a borrowed reference

}

A borrowed alias “forgets” the allocator type of the owner alias it bor-
rowed from; it is just a pointer to an object’s typed contents. As such, there
is only one ‘borrowed’ allocator type, as opposed to multiple borrowed types,
one per owner allocator type. Borrowed aliases are a melting pot across allo-
cator types. And since it does not know the owner’s allocator type, the bor-
rowed alias generates none of the allocator-specific aliasing and de-aliasing
behavior that an owner alias would, including runtime GC bookkeeping.

This freedom from allocator-specific behaviors makes borrowed references
attractive to use:

e Program performance: Borrowed references avoid the bookkeeping
cost imposed by runtime allocators, since aliasing using borrowed refer-
ences has no impact on the object’s reference counter nor are borrowed
references ever traced.

e Code reuse: functions using only borrowed references for parame-
ters will support object access and mutation regardless of the object’s
allocator type.

Because of these benefits, functions (and methods) should be declared to
use and return borrowed references whenever possible. Notable exceptions
would obviously be functions that create or destroy objects (constructors
and destructors). Another exception would be functions that store an object
reference within a data structure of undetermined lifetime.

Note: Functions using borrowed references may have to specify life-
time annotations when lifetime dependencies (section 2.2.2) exist between
parameters and return values. Also, use of borrowed aliases requires spe-
cial handling if borrowing from a moving-GC allocator, one which fixes alias
references whenever an object is moved to a new location. If any borrowed
reference might point to that object, the GC’s trace map has to be complete
enough to find and fix it.

2.3.4 Allocator Polymorphism

Although allocator type is distinct from value type, it is still a type. This
means that functions that use owner aliases as parameters or returns values
will only work for those aliases’ specified allocator types. Thus, a function
that creates a new Array managed by the lexical allocator must be different

16

from a similar function that creates a new Array managed by a tracing GC
allocator. Such parametric polymorphism is a well-known type challenge for
languages.

A popular solution for this challenge is generic programming or tem-
plates, which allow the programmer to define a single function implementa-
tion that the compiler can appropriately generate for all the allocator types
it is applied to. Another approach might involve passing the allocation type
as a separate runtime parameter (e.g., Haskell typeclasses).

Extensive use of borrowed references minimizes this polymorphic over-

head.

2.3.5 Allocator Cross-References

Each allocator has a collection of allocated objects it manages. Because
every allocator’s heuristic never deletes any object that is still referred to,
reference validity is guaranteed between all objects it manages. However,
reference safety cannot always be ensured for references that cross allocator
boundaries, as it would be entirely possible for one allocator to delete an
object that another allocator’s object still refers to, since those references
might be unknown to it.

One foolproof way to ensure memory safety would be to prevent all allo-
cator cross-references. In this scheme, every allocator is treated like walled
garden of objects, such that:

e Every object belongs to only one allocator.

e Every owner alias for the same object maps uses the same allocator
type.

e Every object an object refers to also belongs to the same allocator.
Compiler enforcement of allocator walled gardens is straightforward:

e Since allocators are types, generate a “type mismatch” error any time
a reference held by one allocator is assigned to an alias declared to a
different allocator.

e Do not allow fields within a collection (e.g., a structure or array) to
declare an allocator type. This ensures that an object can only refer
to another object within the same allocator.

However, this simplistic scheme is unnecessarily restrictive, as it forbids po-
tentially useful cross-allocator references that a compiler could still guarantee
to be safe. For example:

17

e Borrowed references have a different allocator type than the owner
aliases they borrow from, yet the compiler can use lexical lifetime de-
pendency checks to ensure the borrowed alias always expires before the
owner alias.

e Runtime GC allocator cross-references: A tracing GC reference
can be safely nested within an RC-managed object. The reverse is also
true. Cross-references between runtime allocators must be done using
Indirect object nesting, as direct multi-allocator references won’t work.
For example, an RC-typed reference would improperly try to increment
a non-existent reference counter for an object that was allocated by a
tracing GC and therefore holds a different kind of bookkeeping meta-
data.

Given these examples, the compiler can still enforce reference safety by fol-
lowing these more permissive rules:

e Aliasing. Allow any allocator’s references to be aliased to a borrowed
reference. Generate an error message for any other allocator type mis-
match.

e Collections. Allow a structure’s fields to declare a runtime GC alloca-
tor. However, if a structure has fields that declare a specific allocator,
only allow that structure to be allocated by a runtime GC allocator.

The walls can be softened further by allowing programs to copy or move
content between allocators. This capability is conceptually similar to value
type conversions, except here we are “converting” an allocated object from
one allocator to another. Such conversions require a cooperative handshake
between the sending and receiving allocator. For example:

e Copy: The receiving allocator allocates space for a new object (setting
up the appropriate metadata) and copies the content pointed at by a
borrowed reference. Particular care must be taken when copying over
an object that references other objects; any copy sent across must be a
“deep” clone that comprehensively ensures the entire chain of referenced
objects are also copied. Quite obviously, any mutation of one copy will
have no impact on the contents of the other.

e Move: This works like a copy, except the sending allocator deletes (or
de-aliases) the copied object after the copy is complete. If the moved
object references other objects, a “deep” move of all referenced objects

18

must be performed. Such a deep move might require copying, to ensure
all moved objects have the correct bookkeeping metadata for the new
allocator. In some cases, such as resizeable objects, the move might
only need to copy header information and not the content pointed at
by the header, whose ownership is just transferred over.

2.4 Permissions and Race safety

A language promoting memory safety needs to safeguard concurrent muta-
tion. It is known: concurrent mutation of the same object is dangerous.
This risk can be mitigated, however, by constraining any of these rights:
aliasing, mutation, or concurrency. The strong concurrency guarantees that
Rust and Pony make are enforced by their use of such lock-less, compile-time
permission constraints applied to every alias.

Let’s clarify the meaning of alias mutation. For an alias that refers to an
object, it could mean:

e Altering the alias to point to a different object
e Changing the contents of the object it points to

We use the latter meaning from now on when we talk about any permission
that allows or forbids an alias from being used to mutate an object.

There are several permission schemes that languages offer to help manage
race safety. Pony offers the most extensive approach, defining six distinct
permissions that it calls reference capabilities|Pony-cap|. These will be in-
troduced one-at-a-time, in the context of describing permission schemes that
are a subset of Pony’s. Each permission is given a name that is more familiar
(and hopefully easier to remember) than Pony’s chosen names.

2.4.1 Locked mutation

Many imperative programming languages treat aliases as mutable by default.
No aliasing restrictions are imposed on them within and between threads.
To prevent concurrent mutation, the programmer manually wraps locks (or
some other synchronization mechanism such as CPU intrinsics) around any
get or put access to thread-shared aliases that refer to alterable objects.
This manual approach has well-known safety and performance draw-
backs. With regard to safety, it is notoriously difficult to ensure synchro-
nization mechanisms are consistently and correctly specified. As for perfor-
mance, synchronizing frequently accessed objects can noticeably slow down
a program’s throughput or create deadlocks. Despite these drawbacks, there

19

are concurrency problems that require synchronization to handle correctly.
For example, concurrent GCs that manage cross-thread aliases to the same
object require the use of synchronization at critical moments (e.g., when
altering an object’s reference counter).

To improve safety, a language’s compiler could be enriched to validate
that locks are properly specified on aliases shared between threads. This
scheme requires that every alias has one of two permissions:

e mut. A mut alias may access or change the contents it refers to.
Multiple aliases may exist that point to the same object, but only
within a single thread. mut aliases may never be sent to or referenced
by any other thread. (Pony calls this ref).

e lock. A lock alias may access or change the contents it refers to.
Multiple aliases may exist that point to the same object in any thread.
However, the compiler protects against concurrent access by requiring
that any read or write to that reference is always performed behind a
specified atomic lock.

2.4.2 TImmutable-only

Some functional programming languages take an opposing approach. They
eschew all mutation, instead building programs that use only immutable
objects, never changing their contents after they are created. In this scheme,
all aliases are implicitly declared:

e imm. An imm alias may retrieve, but never change, the contents it
refers to. Multiple aliases may exist that point to the same object in
any thread. Such objects are globally accessible and immutable. (Pony
calls this val).

There are several benefits to this approach. Programs can be composed us-
ing pure functions, making them easier to reason about using formal proofs.
Immutable-only programs support concurrency without any additional con-
straints.

There are drawbacks to immutable-only. The performance and mem-
ory churn of complex, immutable data structures is often noticeably worse
than their mutable equivalents. Furthermore, some programmers do not
value constraining their code to use only immutable data structures and
pure functions that eschew all side effects.

20

2.4.3 Exclusive mutation

To marry together the distinct benefits of mutable and immutable aliases,
some languages support both. This is what Rust does, but with an important
twist: its mutable reference permission is different from the one defined
earlier, as Rust allows only one mutable alias to an object at a time. To
distinguish Rust’s mutable permission from mut, we give it its own name:

e unique. A unique alias may access or change the contents it refers to.
At any time, only one such alias has permission to mutate its object
and no other able to read it. However, a unique alias may transfer its
singular object reference to another alias (even one declared in another
thread), after which point the original alias is no longer usable. (Pony
calls this iso)

This lockless scheme offers several useful advantages. We can use muta-
ble data structures that perform better and simplify algorithmic complexity.
Additionally, safe concurrency becomes a bit faster (without locks) and more
flexible, since mutable data may now also be transferred from one thread to
another. Indeed, unique aliases do not just make concurrent mutability safer,
they also make single-threaded mutability safer. The unique permission pre-
vents a number of data interference problems that can arise when multiple
aliases may be created that refer to the same mutable object.[Rust-single]

There are downsides to unique, most notably that it prevents a program
from creating multiple mutable aliases to the same object. This single-alias
restriction of the unique permission makes it impossible to create a number
of useful mutable data structures, such as double-linked lists, graphs that
include multiple-use nodes, or cyclic, self-referential graphs.

2.4.4 Midori’s permissions

For several years, Microsoft researchers worked on an internal operating-
system project code-named Midori|Duffy-perm|. Its purpose was to create
a safer foundation for hosting fast, concurrent-capable programs. Its design
increasingly centered around lockless, language-declared permissions whose
concurrent safety could be enforced at compile time. There are many notable
design decisions in common between Midori and Pony.

A Midori alias was declared using one of four permissions: mutable, iso-
lated, immutable and readonly. These correspond exactly to the permissions
we call: mut, unique, imm, and:

21

e const. A reference to an object which may not be changed by this
alias. Other const, imm or mut aliases may exist that also refer to
the same object. However the const aliases are restricted to the same
thread. A const alias may not send or share its object reference with
another thread. (Pony calls this box).

The difference between imm and const is subtle but important. Declare
a function parameter to be const for an object reference that the function
promises not to change. The function does not care if the reference was
borrowed from a mut, imm, or const alias. However, since it is declared const
(rather than imm), the function is prevented from passing this potentially
mutable reference to another thread.

Midori’s permissions extend the benefits of the exclusive-mutation scheme.
The mut permission makes possible the use of mutable network graph data
structures that incorporate multiple references to the same object. Such
thread-specific data structures can sometimes even be packaged together into
a unique object reference which can be bounced around between threads.

2.4.5 Pony’s permissions

Pony adds two more permissions beyond Midori:

e mutx. An exclusive mutable reference that can be held by only one
alias at a time and cannot be transferred to another thread. Multiple
immutable references may be borrowed from it (via const), but only in
the same thread. (Pony calls this trn).

e id. Multiple id references can exist of the same object in multiple
threads. One cannot read or write to the content of this object, but
can still compare identity and call methods on the object. (Pony calls
this tag).

2.4.6 Permissions Summary

Choosing between seven permissions feels overwhelming when meeting them
for the first time. How does one quickly determine which is the right one for
each alias, in a way that plays well across many functions and modules? It
is not as difficult as it first seems.

Owner aliases generally use one of four permissions:

e mut. The natural default for changeable data. It cannot leave its
thread.

22

e imm. For data that never changes after creation. It is shareable
everywhere.

e unique. The natural default for data created by a constructor, as it
transitions easily to mut or imm. Also, unique is useful for sending
mutable data to another thread.

e lock. For changeable data shared by multiple threads.

The other permissions are usually used by borrowed references as function
parameters. They allow a single function to gracefully accept multiple per-
missions on the object references they get, thereby avoiding having to deal
with permission-based parametric polymorphism:

e const. The natural default for data the function will not change,
accepting any other permission (except lock and id).

e mutx. For data the function wants to be able to change, accepting
unique and mut.

id is typically used by a thread to refer to another thread for communication
purposes. It can also be used to compare that two known objects are the
same. An id alias is borrowed from an alias of any other permission.

2.5 Permission Enforcement & Coercion

The compiler constrains alias use using principles derived from the rights
that a permission grants or denies:

e Fail prohibited content access. Any attempt to access or alter the
contents referred to by an alias will fail to compile if the alias does not
have the appropriate read or write permissions. With lock, all access
must be contained within an atomic lock.

e Fail unsafe aliasing. If a new alias attempts to gain rights that the old
alias does not have, the compiler should fail the program with helpful
€ITOr INessages.

e Support safe coercions. Allow a new alias to specify a different permis-
sion than the old alias, so long as permission rights are further curtailed
and not expanded.

e Honor aliasing restrictions for unique and mutx. The old alias should
be made unusable for the lifetime of a new alias (permanently if own-
ership has been transferred to the new alias).

23

Let’s examine in detail how that plays out when aliasing within a thread, to
a data structure, and between threads.

2.5.1 In-Thread Aliasing

This table uses ‘x’ to show legal coercions when aliasing between old aliases
(rows) to new aliases (columns). “move” indicates either that ownership is
transferred if new alias is an owner or that the old alias is not usable until
the new borrowed reference alias goes out of scope.

‘ ‘ unique ‘ mut ‘ imm ‘ lock ‘ mutx ‘ const ‘ id ‘

unique move move | move | move | move | move | X
mut X X X X
imm X X X
lock X X
mutx move | move | X
const X X
id X

2.5.2 Combining Properties for Structures

A layer of complexity is added when dealing with data structures whose
named fields each specify their own permissions. When accessing or aliasing
a field, the compiler computes and enforces a new permission that combines
the restrictions of the alias referencing the data structure (row) and the
permission of the requested field (column).

unique | mut | imm | lock | mutx | const | id |

unique | unique id imm id id id id
mut unique | mut | imm | lock | mutx | const | id
imm imm imm | imm id mutx | const | id
lock n/a n/a | n/a | n/a | n/a n/a | n/a

mutx | unique | mutx | const | lock | mutx | const | id
const id const | imm id const | const | id
id n/a n/a | n/a | n/a | n/a n/a | n/a

2.5.3 Cross-thread Communications

Let’s first define what we mean by thread. For this paper, thread refers to
a variety of mechanisms that allow multiple execution stacks to run concur-
rently or in parallel, such as OS-managed threads, actors, Erlang processes,
or cooperative green threads (e.g., co-routines or generators). The term

24

thread does not encompass OS-managed processes that cannot share mem-
ory in common and must communicate via sockets.

Because threads are often asynchronous, communications between threads
typically go in one direction: a send that does not wait for data to be re-
ceived back. Permissions carefully control what sort of data can be sent to
another thread. One cannot send either stack or borrowed reference aliases
to another thread (the latter because we lose the ability to enforce lifetime
dependencies).

Owner aliases may be sent only if they have the unique, lock, imm or id
permission. unique always moves ownership of the data to the new thread.
With the other permissions, ownership is transferred if it is lexical, otherwise
these aliases must be protected by a concurrent, runtime GC allocator type.

2.5.4 Recover Block

Pony supports a special lexical structure called a recover block. It allows
one to “open up” a unique value, work with it under isolated conditions and
then close it back up to a unique or some other permission. Such a block
is valuable for Pony, which does not support borrowed reference aliases. It
may be redundant in a language that does support borrows.

Although the recover block executes within a thread, it is isolated as if it
were a separate thread. Like thread sends, it restricts access to outer scope
variables that are unique, lock, imm and id. The value it returns from inside
the block may be cast to unique, mut or mutx (if mutable) or imm, const,
or id otherwise.

3 Gradual Memory Management

The previous section presented the mechanisms that underlie four typing
properties of aliases: value type, lifetime, allocator type, and permissions.
Let’s now explore how they work together to give programmers better con-
trol over memory use with regard to compile-time safety guarantees, perfor-
mance, responsiveness, memory utilization, flexibility and programmer con-
venience. At the heart of this synergy lies the concept of gradual memory
management.

The notion of making memory management “gradual” is inspired by grad-
ual typing[Siek]. Although some may view gradual typing as a graceful way
to evolve a dynamically-typed program into one that specifies static types, it
is more properly viewed as a technique that gives the programmer a choice

25

for every variable, whether to constrain it to a static type or else let its type
be determined by the value(s) it receives at runtime.

Gradual memory management captures a similar idea: it offers the pro-
grammer a choice over how memory is used on an alias-by-alias basis. In the
context of this paper, a language supporting gradual memory management
could deliver three distinct value propositions:

e [t is not opinionated. Rather than dictate the memory management
strategy your program uses, the language lets you pick the strategy
that best addresses your priorities. Alternatively, the language uses
lexical and runtime performance analysis to algorithmically select the
optimal mix of memory management strategies.

e It is not fussy. It offers programmer-friendly defaults and opt-in con-
straints and features so that the programmer need not learn the entire
language nor fight a nagging compiler to write useful working pro-
grams. Programmers can incrementally learn and use more advanced
features over time to take advantage of additional benefits.

e [t is helpful. The language gives you new capabilities you never had
before, such as the ability to safely integrate multiple memory man-
agement strategies within the same program.

By offering more choice, gradual memory management allows the program-
mer to optimize memory safety, performance, memory utilization and pro-
grammer convenience, with fewer trade-offs. Let’s explore each of these in
more depth.

3.1 Compile-time Safety

One of the primary benefits of typing systems is the role they play in enforc-
ing safety constraints at compile time, long before the program has a chance
to make a mistake during execution. With regard to memory management,
Joe Duffy’s three safeties|Duffy-safe]are a good summary:

e Concurrency safety prohibits unsafe concurrent, mutable use of
shared memory. The compiler enforces this using the alias permis-
sions, aided by lifetime information.

e Type safety prohibits use of memory that is at odds with the type
allocated within that memory. The compiler enforces this using the
value type.

26

e Memory safety prohibits access to invalid regions of memory (e.g.,
buffer overflow, use after free, and double frees). The compiler uses
types to enforce this:

— Constraining pointer arithmetic so that references always point
to valid data.

— Lifetime checks on aliases whose allocator type is lexical or bor-
rowed.

— Automatic memory allocator types that free objects when all ref-
erences to it are gone.

This list is comparable to the robust, compile-time safety guarantees claimed
for both Pony|[Pony-safe| and Rust|Rust-safe]. These safety guarantees are
not only successfully enforced by their respective compiler implementations,
but are often also backed up by formal type system proofs. An additional
benefit of enforcing safety at compile-time is that it rarely imposes any run-
time performance cost.

There is room for flexibility with regard to safety. For example, Rust
supports an “unsafe” block, wherein type violations will not be enforced,
thereby moving the burden of trustworthiness to the programmer. Likewise,
a program can safely use any of the five previously-described permutations
(subsets) of the seven permission types. They may vary with regard to
flexibility or performance, but they are all equally safe.

3.2 Performance and Responsiveness

A program’s performance profile depends greatly on its design and the com-
plex interplay of many factors beyond memory utilization. Thus, gradual
memory management is not a magic bullet for improving performance, a
notoriously challenging art. However, offering programmers greater control
over memory management through the ability to select the optimal alloca-
tor and permission type on an alias-by-alias basis opens the door to more
aggressive tuning of a program’s performance.

Let’s begin by comparing the performance profiles of different allocator
types.

Runtime garbage collectors, such as RC and tracing, incur a performance
overhead due to the object lifetime expiration bookkeeping they do regularly
throughout the execution of the program: either keeping an accurate, ongo-
ing count of references or else tracing all references from the roots to deter-
mine which are alive and which can be swept. This performance overhead
increases as the number of allocated objects and references grows.

27

In addition to performance overhead, runtime GCs (particularly tracing)
are more likely to struggle with maintaining a predictable real-time respon-
sive to events, due to sporadic stop-the-world pauses at unexpected times.
Such pauses are necessary whenever the garbage collector needs to perform
atomic bookkeeping work whose integrity must not be damaged by continued
execution of the program’s logic.

By contrast, lexical memory management does not suffer from these
bookkeeping costs, as object lifetimes are calculated at compile-time. All
other factors being the same, lexical and runtime memory management in-
cur similar runtime costs for dynamically allocating and freeing memory,
but lexical’s throughput will likely be faster by avoiding the performance
overhead of runtime bookkeeping. Similarly, lexical’s responsiveness will be
better as it avoids the unpredictable stop-the-world pauses caused by run-
time bookkeeping. Long pauses are still possible, but less likely and easier to
manage deterministically. These benefits also apply to manual memory man-
agement, since the programmer performs lifetime bookkeeping in advance of
program execution.

Comparing allocators solely on throughput and responsiveness, who would
not prefer to use static memory management? Unfortunately, lexical mem-
ory management only works brilliantly for single-owner objects, failing with
more complex multiple-owner data graphs. Additionally, mutable global
data structures managed by lexical GC can leak memory.

Hybrid use of multiple allocator types within the same program offers
a valuable middle ground between these two extremes. Use a runtime GC
allocator type for global data and data that requires multiple owner refer-
ences. Use a static allocator for all other working data for the program.
The runtime GC performance of the hybrid approach will be smaller than
if all objects are managed by a runtime GC, since the hybrid program has
fewer objects to manage (usually new generation churn). This runtime over-
head can be shrunk further by using borrowed aliases, which helps reduce
how many references the runtime GC needs to trace or count. This hybrid
approach also reduces the frequency and duration of stop-the-world pauses,
thereby improving responsiveness.

Further performance benefits can be realized through selective use of
stack or custom allocators, such as object pools or generational arenas, which
can speed object allocation, reduce virtual memory paging and optimize
cache locality, as compared to general-purpose allocators.

Broader use of permission types can also help improve performance over
more restrictive permission schemes:

28

e Lockless concurrency mechanisms often run faster than mechanisms
based on locks (by avoiding synchronization and thread switching de-
lays) or “shared nothing” message passing (by reducing data cloning).

e Being able to mark data as imm allows the compiler to optimize for
performance. The Midori project measured a significant performance
boost from this, particularly with regard to global data.

e Being able to safely alter mutable data structures in place reduces the
overhead of allocating space every time immutability might require the
creation of a new altered object.

3.3 Memory utilization

It is the program’s responsibility to ask for the memory it needs. Alias
types do not vary much in how much memory a program requests. However,
the choice of allocator type can minimize memory fragmentation and leaks,
which left unchecked might push overall memory use beyond the constraints
of the program’s device (e.g., mobile or embedded system):

e To minimize memory leaks, particularly for long-lived mutable data
structures, runtime GCs are a better choice than lexical GC, as the
runtime GC may notice the lifetime expiration of such objects more
quickly than when its owning lexical block, particularly the program’s
main() function, finishes executing.

e To minimize memory fragmentation, a program can make use of space-
efficient allocator types, such as mark-and-compact, object pools or
arenas.

3.4 Programmer Convenience

This paper proposes a complex, clockwork mechanism. It borrows intricate
gears from Rust and Pony and then injects its own intricate gears. Given the
number of people that find Rust and Pony hard to learn precisely because of
their gears, does this composite memory management mechanism even have
a chance to be easy on a programmer?

Yes.

The secret sauce lies with its “gradual” nature. Similarly to how gradual
typing languages ease a program’s transition from dynamic types to static
types, gradual memory management facilitates a graceful transition from

29

an easy, but workable subset towards more advanced solutions that take
advantage of its flexibility.

One simple, but effective starting point for a language would be one whose
default allocator is a tracing GC and whose default permission is mut. Use
of such a language subset need not be any harder-to-learn nor more verbose
than existing imperative languages. The programmer is fully protected by
safety guarantees, but does not have to fear that their first exposure to
the language will involve wrestling with the borrow checker, selecting the
right allocators, or becoming comfortable with the nuances of seven different
permissions.

Over time, as the skill of the programmer improves and the require-
ments for the program become more stringent with regard to performance
or concurrency, the programmer can progressively make use of additional per-
missions and allocation types. The programmer might then add one more
allocator (e.g., lexical) or permission (e.g., imm) to their palette. And so
on, until the programmer has become masterful at making and assembling
all needed gears to build performant, concurrent programs. This gradual
progression can be facilitated by language documentation that goes beyond
just technically describing the options, and also offers helpful guidance on
where each option is best used.

Furthermore, if the language chooses defaults wisely, declarations need
not become cluttered with permission and allocation type information. Bor-
rowed references will be the norm and should be the easiest to specify. One
can follow Pony’s lead as well: its chosen permission defaults are good enough
to avoid the need to explicitly declare one most of the time.

4 Conclusion

One of the holy grails of 21st century programming is the search for a systems
programming language that is as flexible and performant as C/C++, as safe
as Rust and Pony, and as rich and convenient as Python.

This paper proposes a comprehensive memory management mechanism
that brings us closer to this goal. This mechanism marries together Rust’s
powerful lexical lifetime-based owner /borrow model with Pony’s flexible ref-
erence capability permission model, including fusing together their distinc-
tive approaches to compile-time enforcement of memory safety. It then adds
to that synergistic mix several useful innovations:

e [t introduces the allocator type, supporting the use of multiple “plug
and play” memory management mechanisms by owner aliases. This

30

improves the optimization of complex programs for performance, data
structure flexibility, and memory efficiency, while preserving compile-
time safety, thus reducing the restrictive trade-offs programs now have
to make based on their chosen programming language.

e It relaxes owner aliases to selectively allow multiple aliases to refer
to the same object. This improves data flexibility and programmer
convenience.

e [t distinguishes allocator type from value type, allowing static enforce-
ment of permissions even on "wrapped" values. This improves perfor-
mance and programmer convenience.

e [t introduces the "lock" permission, another mechanism for static en-
forcement of shared, concurrent mutability. This adds both safety and
flexibility, when lockless concurrency is insufficient.

e [t promotes a “gradual" way to take advantage of its interlocking mech-
anisms, so that one can use a simple subset for simple problems and
then gradually make use of more advanced features to handle more
complex requirements. This improves programmer convenience, mak-
ing these valuable features more palatable to people who are unfamiliar
with them or uncomfortable by their constraints.

The technique described in this paper is currently nothing more than a
promising idea, even though built on already-proven innovations. Hard work
and good fortune will be needed to build formal proofs and coded implemen-
tations that demonstrate its viability and realize its promise.

Acknowledgments

I would like to thank Christopher J. Hall for his invaluable inspirations, help-
ful references and explanations, probing questions, thorough editing, and
enthusiastic involvement as these ideas travelled from a wish into a promis-
ing framework. By every measure, this paper is significantly richer for his
contributions.

I would also like to thank Paul Bone, Mike Lewis, Konrad Podlawski,
Matthieu M, and Jared Weakling for taking time out of their busy lives to
review early drafts of this paper and for offering a wealth of valuable feedback
that strengthened its clarity. I am also grateful to Andy Chu for his wise
warning that helped ensure the proposed framework was made gradual and
optional.

31

I would be remiss not to mention the r/ProgrammingLanguages subreddit
community, to which we all belong. Our many conversations and rants about
memory management schemes opened my mind and provoked me to explore
better ways to address decades-old challenges.

Finally, it should be obvious this framework would not exist without
the excellent pioneering work accomplished by the Rust, Pony, and Midori
teams, along with their inspiring predecessors. 1 salute you!

References

[Duffy-perm| Joe Dufty: 15 years of Concurrency.
http://joeduffyblog.com/2016/11/30/15-years-of-
concurrency/

[Duffy-safe|] Joe Duffy: A Tale of 3 Safeties.

http://joeduffyblog.com/2015/11/03/a-tale-of-three-safeties,/
[Pony-cap| Pony Reference Capabilities. https://tutorial.ponylang.org/capabilities/
[Pony-safe] Pony Safety Guarantees. https://tutorial.ponylang.org/

[Rust-life] ~ Rust Lifetime Annotations. https://doc.rust-
lang.org/book/second-edition/ch10-03-lifetime-syntax.html

|[Rust-nll] Rust non-lexical lifetimes. https://github.com/rust-lang/rust-
roadmap /issues;/16

[Rust-own| Rust Ownership. https://doc.rust-lang.org/book /second-
edition/ch04-00-understanding-ownership.html

[Rust-safe] Rust Safe and Unsafe. https://doc.rust-
lang.org/nomicon/meet-safe-and-unsafe.html

[Rust-single] The Problem with Shared Mutability.
https://manishearth.github.io /blog/2015/05/17 /the-problem-
with-shared-mutability /

|[Rust-wrap| Choosing your Guarantees: Wrapper types. https://doc.rust-
lang.org/nightly /book /first-edition /choosing-your-
guarantees.html

[Siek] What is Gradual Typing? https://wphomes.soic.indiana.edu/jsiek /what-
is-gradual-typing/

32

